当前位置:
k262电脑网 > 
网络知识 >  发布时间:2025-06-15 09:09 文章来源于网友投稿,仅供参考!
  
       
     
     
     ITK 简单使用
第一个ITK程序
1、CMakeLists.txt
 1 # This is the root ITK CMakeLists file.
 2 cmake_minimum_required(VERSION 3.10)
 3  
 4 # This project is designed to be built outside the Insight source tree.
 5 project(ITK_demo)
 6  
 7 # Find VTK
 8 set(ITK_DIR D:/ProgramFiles/ITK5.1.1/lib/cmake/ITK5.1) # add wmz
 9 find_package(ITK REQUIRED)
10 include_directories($)
11 message("ITK dir = $")
12 message("ITK lib = $") 
13 
14 include($)
15 #aux_source_directory(src SRC_LIST) 
16 set(SRC_LIST
17     ./itk_demopp)
18 
19 add_executable(itk_demo $ ) 
20 target_link_libraries(itk_demo $)
关于 include($) 的说明可以在 UseITKmake 中找到:
 1 #  
 2 #
 3 # This file is not part of the ITK API.  It exists purely as an
 4 # implementation detail.  This CMake module may change fr version to
 5 # version without notice, or even be removed.
 6 #
 7 # We mean it.
 8 #
 9 
10 # This file sets up include directories, link directories, IO settings and
11 # cpiler settings for a project to use ITK.  It should not be
12 # included directly, but rather through the ITK_USE_FILE setting
13 # obtained fr ITKConfigmake.
2、 测试数据
测试数据下载路径:github/InsightSoftwareConsortium/ITK/tree/master/Examples/Data
其实编译ITK时的目录下就有需要的测试数据,比如我的ITK5.1.1目录下。
\ITK5.1.1\Examples\Data
3、代码
作为第一个示例程序本来应该写一个很简单的像HelloWorld的程序,但是一些比较简单的官网的程序 要么依赖VTK,要么版本高于ITK5.1.1.
所以就找了一个比较长的程序,是一个配准的程序。
代码来自:github/InsightSoftwareConsortium/ITK/blob/master/Examples/RegistrationITKv4/MultiResImageRegistration1xx
我找了一个其他人做过的中文注释版
  1 #include "itkImageRegistrationMethodv4.h"
  2 #include "itkTranslationTransform.h"
  3 #include "itkMeanSquaresImageToImageMetricv4.h"
  4 #include "itkRegularStepGradientDescentOptimizerv4.h"
  5 #include "itkImageFileReader.h"
  6 #include "itkImageFileWriter.h"
  7 #include "itkPNGImageIOFactory.h"
  8 #include "itkResampleImageFilter.h"
  9 #include "itkCastImageFilter.h"
 10 #include "itkRescaleIntensityImageFilter.h"
 11 #include "itkSubtractImageFilter.h"
 12 /*****************************************************************************************************************
 13 * 本例子是一个图像配准的Demo
 14 *   0、创建了一个Cmand对象,用于监控配准的过程,被后面的对象调用
 15 *   1、首先要定义像素的维度以及像素类型:进进而链接参考图像以及浮动图像
 16 *   2、定义框架的基本组件:
 17 *               确定变换种类:TransformType:二维变换
 18 *               确定优化方法:OptimizerType:梯度下降
 19 *               确定相似度度量:MetricType:链接两个图像:浮动图像以及参考图像
 20 *   3、创建图像组件,并且通过创建上述框架,进而进行设置(链接)
 21 *   4、设置插值方法:LinearInterpolateImageFunction并且链接在一起
 22 *   5、6:通过ImageFileReader方法进行读取,链接到 registration并更新
 23 *   7、针对前面的TransformType进行实例化:平移变换用于配准SetInitialTransformParameters:用于设置初始值
 24 *   8、针对优化方法的设置:OptimizerType:前面在创建的时候已经设置了其梯度下降方法,此步骤用于对其微调:初始步长,收敛公差,最大迭代次数
 25 *   9、通过RegistrationParameterScalesFrPhysicalShift:将每一个配准要素链接到配准方法中执行,
 26 *   10、实例化Cmon对象,监控配准过程的执行,触发配准过程迭代
 27 *   11、通过update函数触发配准的执行
 28 *   12、配准结果定义空间变换的参数序列:其结果由GetLastTransformParameters( )获得并且输出
 29 *           X、Y的变换:TranslationAlongX;TranslationAlongY
 30 *           迭代次数:numberOfIterations
 31 *           最后的结果:bestValue
 32 *       通过CpositeTransform:AddTransform将转换添加到堆栈的背面,并且拥有可优化的参数。
 33 *           也就是说:添加堆栈,副本??
 34 *   13、14、15、16、ResampleFilterType方法:
 35 *           用变换参数将两幅图像进行叠加比较,并设置重采样滤波器:输入两幅图像
 36 *           输出的是一个变换
 37 *           对滤波器进行相关参数的设置:大小、原点、间距、位置
 38 *           并通过CastFilterType:setInput:weiter进行相关的输出
 39 *           此时:这个图象就是配准结束后的图像
 40 *   17、通过itk::SubtractImageFilter对两幅图像进行比较:
 41 *           fixedImageReader;resampler
 42 *   18、对图像进行处理 itk::RescaleIntensityImageFilter:调节一下亮度;并进行输出
 43 *   19、一致性转发计算参考图像与正在移动图像之间的不同,输出图片5
 44 ******************************************************************************************************************/
 45 /*CmandIterationUpdate 类:
 46     继承Cmand,监视配准过程的执行。每调用一次,输出相应参数
 47         object类指向事件的观察者
 48         Execute方法,类似cellbake,回转
 49         observer方法:
 50 
 51   */
 52 class CmandIterationUpdate : public itk::Cmand
 53 ;
 61 
 62 public:
  
 64     typedef itk::RegularStepGradientDescentOptimizerv4<double> OptimizerType;
 65     typedef const OptimizerType* OptimizerPointer;
 66 
 67     void Execute(itk::Object* caller, const itk::EventObject& event) ITK_OVERRIDE
 68     
 71     //Object表示激活事件的对象,event表示被激活的事件
 72     void Execute(const itk::Object* object, const itk::EventObject& event) ITK_OVERRIDE
 73     
 80 
 81         std::cout << optimizer>GetCurrentIteration() << " = ";
 82         std::cout << optimizer>GetValue() << " : ";
 83         std::cout << optimizer>GetCurrentPosition() << std::endl;
 84     }
 85 
 86 };
 87 
 88 
 89 int main()
 90 
198     optimizer>SetNumberOfIterations(200);//最大迭代次数
199 
200 
201     //10、实例化cmend对象,监视配准过程的执行,并处触发配准过程
202     CmandIterationUpdate::Pointer observer = CmandIterationUpdate::New();
203     optimizer>AddObserver(itk::IterationEvent(), observer);
204 
205 
206     const unsigned int numberOfLevels = 1;
207 
208     RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
209     shrinkFactorsPerLevel.SetSize(1);
210     shrinkFactorsPerLevel[0] = 1;
211 
212     RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
213     smoothingSigmasPerLevel.SetSize(1);
214     smoothingSigmasPerLevel[0] = 0;
215 
216     registration>SetNumberOfLevels(numberOfLevels);
217     registration>SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);
218     registration>SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);
219 
220 
221 
222     //11、通过调用Update函数触发配准执行
223     try
224     
230     catch (itk::ExceptionObject& err)
231     
236 
237     //12、配准结果是一系列定义空间变换的参数序列,结果由get获得
238     TransformType::ConstPointer transform = registration>GetTransform();
239     TransformType::ParametersType finalParameters = transform>GetParameters();
240     const double TranslationAlongX = finalParameters[0];//队列中每个元素对应着沿着一个空间维度的平移
241     const double TranslationAlongY = finalParameters[1];
242 
243     //优化器能够询问抵达收敛的迭代的实际次数并通过GetCurrentIteration()返回出来
244     const unsigned int numberOfIterations = optimizer>GetCurrentIteration();//迭代次数
245     //最终参数集合的图像量规值通过优化器的GetValue();
246     const double bestValue = optimizer>GetValue();//最优化的度量
247 
248     //将上述输出
249     std::cout << "Result = " << std::endl;
250     std::cout << " Translation X = " << TranslationAlongX << std::endl;//输出移动X的值
251     std::cout << " Translation Y = " << TranslationAlongY << std::endl;//输出移动Y的值
252     std::cout << " Iterations    = " << numberOfIterations << std::endl;//输出迭代次数
253     std::cout << " Metric value  = " << bestValue << std::endl;//输出优化的度量
254 
255     typedef itk::CpositeTransform<
256         double,
257         Dimension > CpositeTransformType;
258     CpositeTransformType::Pointer outputCpositeTransform =
259         CpositeTransformType::New();
260     outputCpositeTransform>AddTransform(movingInitialTransform);
261     outputCpositeTransform>AddTransform(
262         registration>GetModifiableTransform());
2 
264 
265     //13、用变换结果将待配准图映射到参考图像中
266     typedef itk::ResampleImageFilter<
267         MovingImageType,
268         FixedImageType >    ResampleFilterType;
269 
270     //14、创建一个重采样滤波器,输入待配准图像
271     ResampleFilterType::Pointer resampler = ResampleFilterType::New();
272     resampler>SetInput(movingImageReader>GetOutput());
273     //配准函数生成的变换也作为重采样滤波器的输入被传递
274     resampler>SetTransform(outputCpositeTransform);
275 
276     //15、ResampleImageFilter要求指定额外的参数,特别是输出图像的间 距、原点和大小
277     FixedImageType::Pointer fixedImage = fixedImageReader>GetOutput();
278     resampler>SetSize(fixedImage>GetLargestPossibleRegion().GetSize());//尺寸
279     resampler>SetOutputOrigin(fixedImage>GetOrigin());//原点
280     resampler>SetOutputSpacing(fixedImage>GetSpacing());//间距
281     resampler>SetOutputDirection(fixedImage>GetDirection());//位置
282     resampler>SetDefaultPixelValue(100);
283 
284     //16、滤波器的输出被传递给一个在文件中存储图像的writer
285     typedef unsigned char OutputPixelType;
286 
287     typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
288 
289     typedef itk::CastImageFilter<//转化重采样的像素类型到最终的writer类型
290         FixedImageType,
291         OutputImageType >          CastFilterType;
292     typedef itk::ImageFileWriter< OutputImageType >  WriterType;
293     //调用new函数创建新的滤波器
294     WriterType::Pointer      writer = WriterType::New();
295     CastFilterType::Pointer  caster = CastFilterType::New();
296     writer>SetFileName("E:\\documents\\vs2019\\itk_demo\\build\\RelWithDebInfo\\output\\RegistrationITKv4Moving13x17yInputType.png");//写到文件夹位置
297     caster>SetInput(resampler>GetOutput());
298     writer>SetInput(caster>GetOutput());
299     writer>Update();//触发更新
300 
301     //17、参照图像和被变换的待配准图像很容易用itk::SubtractImageFilter比较
302     //pixelwise滤波器 计算两幅输入的同源像素的不同:
303     typedef itk::SubtractImageFilter<
304         FixedImageType,
305         FixedImageType,
306         FixedImageType > DifferenceFilterType;
307 
308     DifferenceFilterType::Pointer difference = DifferenceFilterType::New();
309 
310     difference>SetInput1(fixedImageReader>GetOutput());//不同
311     difference>SetInput2(resampler>GetOutput());
312 
313     //18、两幅图像的不同也许比较暗,我们用下面方法对其进行调节亮度,使之更加的明显
314     typedef itk::RescaleIntensityImageFilter<
315         FixedImageType,
316         OutputImageType >   RescalerType;
317 
318     RescalerType::Pointer intensityRescaler = RescalerType::New();
319 
320     intensityRescaler>SetInput(difference>GetOutput());
321     intensityRescaler>SetOutputMinimum(0);
322     intensityRescaler>SetOutputMaximum(255);
323 
324     resampler>SetDefaultPixelValue(1);
325 
326 
327     //输出到另外一个位置(调亮)
328     WriterType::Pointer writer2 = WriterType::New();
329     writer2>SetInput(intensityRescaler>GetOutput());
330 
331     writer2>SetFileName("E:\\documents\\vs2019\\itk_demo\\build\\RelWithDebInfo\\output\\Moving13x17yInputType.png");
332     writer2>Update();
333 
334     //设置了一致性转换,计算参考图像的不同
335 
336     resampler>SetTransform(identityTransform);
337 
338     writer2>SetFileName("E:\\documents\\vs2019\\itk_demo\\build\\RelWithDebInfo\\output\\DifferenceBeforeRegistration.png");
339     writer2>Update();
340 
341     return EXIT_SUCCESS;
342 
343 }
4、结果
输入图像
输出图像
上一篇:SimpleITK 读取医学影像文件 
下一篇:NRRD批量转换成NIFTI 
        
ITK