PyTorch批训练
PyTorch提供了一种将数据包装起来进行批训练的工具——DataLoader。使用的时候,只需要将我们的数据首先转换为torch的tensor形式,再转换成torch可以识别的Dataset格式,然后将Dataset放入DataLoader中就可以啦。
TensorDataset
classtorch.utils.data.TensorDataset(data_tensor,target_tensor)
TensorDataset类用来将样本及其标签打包成torch的Dataset,data_tensor,和target_tensor都是tensor。
DataLoaderweixiu3721
classtorch.utils.data.DataLoader(dataset,batch_size=1,shuffle=False,sampler=None,num_workers=0,collate_fn=<function default_collate>,pin_memory=False,drop_last=False)
dataset就是Torch的Dataset格式的对象;batch_size即每批训练的样本数量,默认为;shuffle表示是否需要随机取样本;num_workers表示读取样本的线程数。
Python
pla文件怎么看,pla文件用什么打开?
pl1文件怎么看,pl1文件用什么打开?
pl文件怎么看,pl文件用什么打开?
pl0文件怎么看,pl0文件用什么打开?
pkt文件怎么看,pkt文件用什么打开?
pkm文件怎么看,pkm文件用什么打开?
pks文件怎么看,pks文件用什么打开?
pka文件怎么看,pka文件用什么打开?
pkh文件怎么看,pkh文件用什么打开?
pkg文件怎么看,pkg文件用什么打开?